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Obtaining an Analytical Model for
Low-swirl Combustion

Apply Particle Imaging Velocimetry (PIV) to measure 
instantaneous velocity vectors within an area of 13 x 13 cm
4Facilitates the collection of a large amount of flowfield data

Characterize flowfield and flame behavior as function of:
4swirl number
4fuel type
4fuel air ratio
4bulk flow velocity

Define key parameters that characterize the flowfield
Develop analytical model for the relationships between the 
flame and flowfield  
4Basis for scaling and adaptation guidelines
4Less reliance on computational fluid mechanics (CFD)
4Reduce uncertainties and increase predictability
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Apparatus, Diagnostics & 
Analysis

LSI mounted to the 
plenum and premixer 
of an industrial burner
Applied PIV to 
atmospheric open 
flames
4Previous development 

with Solar demonstrated 
relevancy of open flame 
experiments

Deduced mean, rms 
velocities, Reynolds 
stresses & turbulent 
flame speeds

PIV interrogation 
region of open 
flames
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Experimental Conditions
Lean flames burning single and dual-
component fuels with a range of Wobbe 
indices
Operating regimes for each fuel defined by 
LBO and emissions
Varied bulk flow velocity U0 from 7 to 22 m/s

Raw PIV image showing wrinkled
premixed turbulent flame structures

Fuel 
Composition

Tad at φ = 1
K

SL at φ = 1
m/s

SL at Tad = 
1800K

CH4 2230 0.39

0.74

0.45

0.20

0.31

0.57

2.4

1.2

0.17

C2H4 2373 0.23

C3H8 2253 0.22

0.5 CH4/ 0.5 CO2 2013 0.12

0.6 CH4/ 0.4 N2 2133 0.16

0.6 CH4/ 0.4 H2 2258 0.22

H2 2535 0.61

0.5 H2/ 0.5 N2 2056 0.61
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Hydrocarbon Flame Results 
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Flowfield of LSC Shown by 
Particle Image Velocimetry 

Mean velocity vectors on axial plane Mean velocity vectors on cross-plane

Flame zone
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Normalized mean vectors and 
Reynolds stress at U0 = 7 m/s

Flow Flame
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Normalized mean vectors and 
Reynolds stress at U0 = 10 m/s

Flow Flame
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Normalized mean vectors and 
Reynolds stress at U0 = 15 m/s

Flow Flame
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Normalized mean vectors and 
Reynolds stress at U0 = 19 m/s

Flow Flame
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Normalized mean vectors and 
Reynolds stress at U0 = 22 m/s

Flow Flame
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PIV Measures the Parameters that Describe
Flame/Flow Coupling in LSI

Four parameters deduced from the centerline velocity profile
Virtual Origin, x0, Normalized Axial Divergence Rate, ax,
Flame Position, xf and Turbulent Flame Speed, ST

ax = d(U/U0)/dx slope of 
the linear region

xf
ST/U0
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ST of CH4, C3H8, C2H4 and Diluted HC 
Flames Show Linear Correlation

ST from LSI flames 
consistent with 
those of previous 
studies
Linear behavior 
unique to low-swirl 
combustion
Additional data 
being obtained at 
higher U0
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Trends of x0, and ax with
Reynolds Number Indicate Similarity

Virtual origin x0 leveling-off at 
high Re 
4Slight shift of the divergence 

flow structures into the injector 
barrel with increasing velocity

Normalized divergence 
stretch ax insensitive to Re
4Combustion generates a 

systematic increase in ax

Nearfield flow structures have 
a similar form that is 
independent of power output
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Similarity in the Nearfield Shown by 
Normalized Centerline Profiles 
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Significant Implication of Similarity
Provides an analytical means to quantify the flame/flow 
relationship by the use of ax, U0, ST and xf
4the axial velocity at xf is

4Divide through by U0 and invoke ST correlation gives

invariant due to 
similarity (i.e. ax) 

asymptote at 
large U0

small at 
large U0

constant for 
plate turbulence

o

LT

o

of

U
u

U
S

U
S

U
xx

dx
dU '16.2)(

1
00

+==
−

−

Tofo Sxx
dx
dUU =−− )(

Flowfield similarity and linear ST correlations explains why flame remains 
stationary through a wide range of velocities and φ
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Flashback and Flame Positions 
Predictable from Analytical Equation 

Results imply that fuel effects are significant only at low U0
4 Velocity at flash back  correlates with SL

4 Flame position independent of SL at large U0
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Flashback Considerations for 
Low-Swirl and High-swirl 

Flashback through hot
boundary layer at flame

attachment region

Combustion oscillation 
flashback

Convective flashback –
local velocity < ST

Convective flashback –
local velocity < ST

• LSC analytical model addresses convective flashback

• Need studies on LSC vulnerability to combustion oscillation flashback

Vortex breakdown 
flashback due to axial 

vorticity in recirculation 
region
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Flowfield Features Unaffected
by Fuel Type

Flowfield features of 
CH4 and diluted CH4
flames are the same
Flame stabilization 
mechanism not 
affected by variation 
in fuel composition
Slight shift in flame 
position due to 
slower burning flame
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LSI Supports 
Stable 

< 5 ppm NOx
Hydrocarbon 

Flames
Exponential NOx
dependence on φ 
CO emissions within 
acceptable limits
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NOx Emissions Show Log-linear 
Dependency on Flame Temperature

NOx emissions from STP laboratory experiments 
consistent with data at gas turbine conditions
Absence of strong recirculation in LSI may explain the 
correspondence between laboratory and GT emissions
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Preliminary Conclusions on 
Hydrocarbon Fuel-Flexibility Studies

LSI accepts all test fuels including CH4 diluted 
with H2
LSI supports stable < 5 ppm NOx flames
NOx emissions scale with adiabatic flame 
temperature 
4NOx emissions from laboratory flames STP consistent with high 

pressure rig test data at turbine conditions

Significant adjustment may not be necessary for 
current LSI to fire with hydrocarbon fuel blends
4ST of hydrocarbon and CH4 flames have same correlation

Recent high T, P rig-tests at Solar Turbines 
demonstrate firing with fuels from 550 Btu/ft3 to 
1250 Btu/ft3
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Considerations for Adaptation of LSI to 
Fuel-Flexible & IGCC Turbines

Changes in flame speed correlation will be the 1st order effect
4Turbulent flame speeds for HC fuels have similar correlation as natural gas

Significant redesigning of swirler may not be necessary
4Turbulent flame speed data for H2 mixtures are lacking

Large uncertainties in laminar flame speed data for lean H2 mixtures

Changes in heat release will be the 2nd order effect
4Changes in LSI flowfield correlates with combustion heat release

LSI swirl rate can be adjusted to accommodate the fuel effects
4Increase or decrease the swirl rate to optimize flame position
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